MicroRNAs como biomarcadores de diagnóstico temprano en aterosclerosis

Autores/as

DOI:

https://doi.org/10.59169/pentaciencias.v5i5.757

Palabras clave:

enfermedad cardiovascular, fisiopatología, predictores diagnósticos, dianas terapéuticas

Resumen

La ateroesclerosis es una patología multifactorial de progreso lento y silente en el que intervienen las células endoteliales, células musculares lisas vasculares, adipocitos, células inflamatorias y el flujo sanguíneo. Los microRNAs (miRNAs) son reguladores esenciales de las vías metabólicas inmersas en el desarrollo de esta patología por lo que se consideran potenciales predictores de severidad y dianas terapéuticas. El objetivo de este estudio es recopilar información actualizada que permita entender el rol de los miRNAs en cada uno de los componentes de la fisiopatología de la aterosclerosis, así como su utilidad como marcador en el diagnóstico temprano de la aterosclerosis. La inhibición o sobreexpresión de los miRNAs- involucrados determinan la evolución de esta patología, desde su inicio, progreso y regresión. Varios estudios confirman su expresión en cada línea celular y tejido inmerso en la fisiopatología de la aterosclerosis, no obstante, es necesario establecer relaciones entre su expresión in situ y en sangre periférica, su sensibilidad y especificidad para determinar su viabilidad en la práctica clínica.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Joselyn Anabel Gavilánez, Universidad Técnica de Ambato

Estudiante de la Facultad de Ciencias de la Salud de la Universidad Técnica de Ambato

[email protected]

Elizabeth Proaño, Universidad Técnica de Ambato

Profesora investigadora en la Facultad de ciencias de la Salud Universidad Técnica de Ambato

Citas

Ait-Aissa, K., Nguyen, Q. M., Gabani, M., Kassan, A., Kumar, S., Choi, S.-K., Gonzalez, A. A., Khataei, T., Sahyoun, A. M., Chen, C., & Kassan, M. (2020). MicroRNAs and obesity-induced endothelial dysfunction: Key paradigms in molecular therapy. Cardiovascular Diabetology, 19, 136. https://doi.org/10.1186/s12933-020-01107-3

Ali Sheikh, M. S., Alduraywish, A., Almaeen, A., Alruwali, M., Alruwaili, R., Alomair, B. M., Salma, U., Hedeab, G. M., Bugti, N., & A.M.Abdulhabeeb, I. (2021). Therapeutic Value of miRNAs in Coronary Artery Disease. Oxidative Medicine and Cellular Longevity, 2021, 8853748. https://doi.org/10.1155/2021/8853748

Avogaro, A., & de Kreutzenberg, S. V. (2005). Mechanisms of endothelial dysfunction in obesity. Clinica Chimica Acta; International Journal of Clinical Chemistry, 360(1-2), 9-26. https://doi.org/10.1016/j.cccn.2005.04.020

Bentwich, I., Avniel, A., Karov, Y., Aharonov, R., Gilad, S., Barad, O., Barzilai, A., Einat, P., Einav, U., Meiri, E., Sharon, E., Spector, Y., & Bentwich, Z. (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nature Genetics, 37(7), Article 7. https://doi.org/10.1038/ng1590

Bergström, G., Persson, M., Adiels, M., Björnson, E., Bonander, C., Ahlström, H., Alfredsson, J., Angerås, O., Berglund, G., Blomberg, A., Brandberg, J., Börjesson, M., Cederlund, K., de Faire, U., Duvernoy, O., Ekblom, Ö., Engström, G., Engvall, J. E., Fagman, E., … Jernberg, T. (2021). Prevalence of Subclinical Coronary Artery Atherosclerosis in the General Population. Circulation, 144(12), 916-929. https://doi.org/10.1161/CIRCULATIONAHA.121.055340

Chao, C.-T., Yeh, H.-Y., Yuan, T.-H., Chiang, C.-K., & Chen, H.-W. (2019). MicroRNA-125b in vascular diseases: An updated systematic review of pathogenetic implications and clinical applications. Journal of Cellular and Molecular Medicine, 23(9), 5884-5894. https://doi.org/10.1111/jcmm.14535

Chen, T., Huang, Z., Wang, L., Wang, Y., Wu, F., Meng, S., & Wang, C. (2009). MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages. Cardiovascular Research, 83(1), 131-139. https://doi.org/10.1093/cvr/cvp121

Cheng, H. S., Besla, R., Li, A., Chen, Z., Shikatani, E. A., Nazari-Jahantigh, M., Hammoutène, A., Nguyen, M.-A., Geoffrion, M., Cai, L., Khyzha, N., Li, T., MacParland, S. A., Husain, M., Cybulsky, M. I., Boulanger, C. M., Temel, R. E., Schober, A., Rayner, K. J., … Fish, J. E. (2017). Paradoxical Suppression of Atherosclerosis in the Absence of microRNA-146a. Circulation Research, 121(4), 354-367. https://doi.org/10.1161/CIRCRESAHA.116.310529

Churov, A., Summerhill, V., Grechko, A., Orekhova, V., & Orekhov, A. (2019). MicroRNAs as Potential Biomarkers in Atherosclerosis. International Journal of Molecular Sciences, 20(22), 5547. https://doi.org/10.3390/ijms20225547

Demolli, S., Doddaballapur, A., Devraj, K., Stark, K., Manavski, Y., Eckart, A., Zehendner, C. M., Lucas, T., Korff, T., Hecker, M., Massberg, S., Liebner, S., Kaluza, D., Boon, R. A., & Dimmeler, S. (2017). Shear stress-regulated miR-27b controls pericyte recruitment by repressing SEMA6A and SEMA6D. Cardiovascular Research, 113(6), 681-691. https://doi.org/10.1093/cvr/cvx032

DiStefano, J. K. (2019). Angiopoietin-like 8 (ANGPTL8) expression is regulated by miR-143-3p in human hepatocytes. Gene, 681, 1-6. https://doi.org/10.1016/j.gene.2018.09.041

Fazmin, I. T., Achercouk, Z., Edling, C. E., Said, A., & Jeevaratnam, K. (2020). Circulating microRNA as a Biomarker for Coronary Artery Disease. Biomolecules, 10(10), 1354. https://doi.org/10.3390/biom10101354

Feinberg, M. W., & Moore, K. J. (2016). MicroRNA regulation of atherosclerosis. Circulation research, 118(4), 703-720. https://doi.org/10.1161/CIRCRESAHA.115.306300

Fichtlscherer, S., De Rosa, S., Fox, H., Schwietz, T., Fischer, A., Liebetrau, C., Weber, M., Hamm, C. W., Röxe, T., Müller-Ardogan, M., Bonauer, A., Zeiher, A. M., & Dimmeler, S. (2010). Circulating microRNAs in patients with coronary artery disease. Circulation Research, 107(5), 677-684. https://doi.org/10.1161/CIRCRESAHA.109.215566

Gamez-Mendez, A. M., Vargas-Robles, H., Ríos, A., & Escalante, B. (2015). Oxidative Stress-Dependent Coronary Endothelial Dysfunction in Obese Mice. PLOS ONE, 10(9), e0138609. https://doi.org/10.1371/journal.pone.0138609

Hu, B., Song, J. tao, Qu, H. yan, Bi, C. long, Huang, X. zhen, Liu, X. xin, & Zhang, M. (2014). Mechanical Stretch Suppresses microRNA-145 Expression by Activating Extracellular Signal-Regulated Kinase 1/2 and Upregulating Angiotensin-Converting Enzyme to Alter Vascular Smooth Muscle Cell Phenotype. PLoS ONE, 9(5), e96338. https://doi.org/10.1371/journal.pone.0096338

Iantorno, M., Campia, U., Daniele, N., Nistico, S., Forleo, G., Cardillo, C., & Tesauro, M. (2014). Obesity, inflammation and endothelial dysfunction. International journal of immunopathology and pharmacology, 28, 169-176.

Jebari-Benslaiman, S., Galicia-García, U., Larrea-Sebal, A., Olaetxea, J. R., Alloza, I., Vandenbroeck, K., Benito-Vicente, A., & Martín, C. (2022). Pathophysiology of Atherosclerosis. International Journal of Molecular Sciences, 23(6), 3346. https://doi.org/10.3390/ijms23063346

Kumar, S., Williams, D., Sur, S., Wang, J.-Y., & Jo, H. (2019). Role of flow-sensitive microRNAs and long noncoding RNAs in vascular dysfunction and atherosclerosis. Vascular pharmacology, 114, 76-92. https://doi.org/10.1016/j.vph.2018.10.001

Laffont, B., & Rayner, K. J. (2017). MicroRNAs in the pathobiology of atherosclerosis. The Canadian journal of cardiology, 33(3), 313-324. https://doi.org/10.1016/j.cjca.2017.01.001

Lee, D.-Y., Yang, T.-L., Huang, Y.-H., Lee, C.-I., Chen, L.-J., Shih, Y.-T., Wei, S.-Y., Wang, W.-L., Wu, C.-C., & Chiu, J.-J. (2018). Induction of microRNA-10a using retinoic acid receptor-α and retinoid x receptor-α agonists inhibits atherosclerotic lesion formation. Atherosclerosis, 271, 36-44. https://doi.org/10.1016/j.atherosclerosis.2018.02.010

Lee, Y., & Im, E. (2021). Regulation of miRNAs by Natural Antioxidants in Cardiovascular Diseases: Focus on SIRT1 and eNOS. Antioxidants, 10(3), 377. https://doi.org/10.3390/antiox10030377

Li, P., Zhong, X., Li, J., Liu, H., Ma, X., He, R., & Zhao, Y. (2018). MicroRNA-30c-5p inhibits NLRP3 inflammasome-mediated endothelial cell pyroptosis through FOXO3 down-regulation in atherosclerosis. Biochemical and Biophysical Research Communications, 503(4), 2833-2840. https://doi.org/10.1016/j.bbrc.2018.08.049

Lim, L. P., Lau, N. C., Garrett-Engele, P., Grimson, A., Schelter, J. M., Castle, J., Bartel, D. P., Linsley, P. S., & Johnson, J. M. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433(7027), Article 7027. https://doi.org/10.1038/nature03315

Maurer, B. (2010). MicroRNA‐29, a key regulator of collagen expression in systemic sclerosis. 6(2), 1563-1838. https://doi.org/10.1002/art.27443

Mellis, D., & Caporali, A. (2018). MicroRNA-based therapeutics in cardiovascular disease: Screening and delivery to the target. Biochemical Society Transactions, 46(1), 11-21. https://doi.org/10.1042/BST20170037

Meloni, M., Marchetti, M., Garner, K., Littlejohns, B., Sala-Newby, G., Xenophontos, N., Floris, I., Suleiman, M.-S., Madeddu, P., Caporali, A., & Emanueli, C. (2013). Local Inhibition of MicroRNA-24 Improves Reparative Angiogenesis and Left Ventricle Remodeling and Function in Mice With Myocardial Infarction. Molecular Therapy, 21(7), 1390-1402. https://doi.org/10.1038/mt.2013.89

Pereira-da-Silva, T., Napoleão, P., Costa, M. C., Gabriel, A. F., Selas, M., Silva, F., Enguita, F. J., Cruz Ferreira, R., & Mota Carmo, M. (2021). Association between miR-146a and Tumor Necrosis Factor Alpha (TNF-α) in Stable Coronary Artery Disease. Medicina, 57(6), 575. https://doi.org/10.3390/medicina57060575

Rask-Madsen, C., Domínguez, H., Ihlemann, N., Hermann, T., Køber, L., & Torp-Pedersen, C. (2003). Tumor necrosis factor-alpha inhibits insulin’s stimulating effect on glucose uptake and endothelium-dependent vasodilation in humans. Circulation, 108(15), 1815-1821. https://doi.org/10.1161/01.CIR.0000091406.72832.11

Schober, A., Nazari-Jahantigh, M., Wei, Y., Bidzhekov, K., Gremse, F., Grommes, J., Megens, R. T. A., Heyll, K., Noels, H., Hristov, M., Wang, S., Kiessling, F., Olson, E. N., & Weber, C. (2014). MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nature Medicine, 20(4), 368-376. https://doi.org/10.1038/nm.3487

Simionescu, N., Niculescu, L. S., Carnuta, M. G., Sanda, G. M., Stancu, C. S., Popescu, A. C., Popescu, M. R., Vlad, A., Dimulescu, D. R., Simionescu, M., & Sima, A. V. (2016). Hyperglycemia Determines Increased Specific MicroRNAs Levels in Sera and HDL of Acute Coronary Syndrome Patients and Stimulates MicroRNAs Production in Human Macrophages. PloS One, 11(8), e0161201. https://doi.org/10.1371/journal.pone.0161201

Solly, E. L., Dimasi, C. G., Bursill, C. A., Psaltis, P. J., & Tan, J. T. M. (2019). MicroRNAs as Therapeutic Targets and Clinical Biomarkers in Atherosclerosis. Journal of Clinical Medicine, 8(12), Article 12. https://doi.org/10.3390/jcm8122199

Sun, H.-X., Zeng, D.-Y., Li, R.-T., Pang, R.-P., Yang, H., Hu, Y.-L., Zhang, Q., Jiang, Y., Huang, L.-Y., Tang, Y.-B., Yan, G.-J., & Zhou, J.-G. (2012). Essential Role of MicroRNA-155 in Regulating Endothelium-Dependent Vasorelaxation by Targeting Endothelial Nitric Oxide Synthase. Hypertension, 60(6), 1407-1414. https://doi.org/10.1161/HYPERTENSIONAHA.112.197301

Vikram, A., Kim, Y.-R., Kumar, S., Li, Q., Kassan, M., Jacobs, J. S., & Irani, K. (2016). Vascular microRNA-204 is remotely governed by the microbiome and impairs endothelium-dependent vasorelaxation by downregulating Sirtuin1. Nature Communications, 7(1), Article 1. https://doi.org/10.1038/ncomms12565

Wang, K.-C., Garmire, L. X., Young, A., Nguyen, P., Trinh, A., Subramaniam, S., Wang, N., Shyy, J. Y. J., Li, Y.-S., & Chien, S. (2010). Role of microRNA-23b in flow-regulation of Rb phosphorylation and endothelial cell growth. Proceedings of the National Academy of Sciences of the United States of America, 107(7), 3234-3239. https://doi.org/10.1073/pnas.0914825107

Weber, M., Baker, M. B., Patel, R. S., Quyyumi, A. A., Bao, G., & Searles, C. D. (2011). MicroRNA Expression Profile in CAD Patients and the Impact of ACEI/ARB. Cardiology Research and Practice, 2011, 532915. https://doi.org/10.4061/2011/532915

Wiemer, E. A. C. (2007). The role of microRNAs in cancer: No small matter. European Journal of Cancer (Oxford, England: 1990), 43(10), 1529-1544. https://doi.org/10.1016/j.ejca.2007.04.002

Zhang, W., Yan, L., Li, Y., Chen, W., Hu, N., Wang, H., & Ou, H. (2015). Roles of miRNA-24 in regulating endothelial nitric oxide synthase expression and vascular endothelial cell proliferation. Molecular and Cellular Biochemistry, 405(1-2), 281-289. https://doi.org/10.1007/s11010-015-2418-y

Zhao, W., Zhao, S.-P., & Zhao, Y.-H. (2015). MicroRNA-143/-145 in Cardiovascular Diseases. BioMed Research International, 2015, 531740. https://doi.org/10.1155/2015/531740

Zhou, J., Li, Y.-S., Nguyen, P., Wang, K.-C., Weiss, A., Kuo, Y.-C., Chiu, J.-J., Shyy, J. Y., & Chien, S. (2013). Regulation of vascular smooth muscle cell turnover by endothelial cell-secreted microRNA-126: Role of shear stress. Circulation Research, 113(1), 40-51. https://doi.org/10.1161/CIRCRESAHA.113.280883

Zhu, G.-F., Yang, L.-X., Guo, R.-W., Liu, H., Shi, Y.-K., Ye, J.-S., & Yang, Z.-H. (2014). MicroRNA-155 is inversely associated with severity of coronary stenotic lesions calculated by the Gensini score. Coronary Artery Disease, 25(4), 304-310. https://doi.org/10.1097/MCA.0000000000000088

Descargas

Publicado

2023-07-17

Cómo citar

Gavilánez, J. A. ., & Proaño, E. (2023). MicroRNAs como biomarcadores de diagnóstico temprano en aterosclerosis . Revista Científica Arbitrada Multidisciplinaria PENTACIENCIAS, 5(5), 581–594. https://doi.org/10.59169/pentaciencias.v5i5.757

Número

Sección

Artículos de revisión