MicroRNAs como biomarcadores de diagnóstico temprano en aterosclerosis
DOI:
https://doi.org/10.59169/pentaciencias.v5i5.757Palabras clave:
enfermedad cardiovascular, fisiopatología, predictores diagnósticos, dianas terapéuticasResumen
La ateroesclerosis es una patología multifactorial de progreso lento y silente en el que intervienen las células endoteliales, células musculares lisas vasculares, adipocitos, células inflamatorias y el flujo sanguíneo. Los microRNAs (miRNAs) son reguladores esenciales de las vías metabólicas inmersas en el desarrollo de esta patología por lo que se consideran potenciales predictores de severidad y dianas terapéuticas. El objetivo de este estudio es recopilar información actualizada que permita entender el rol de los miRNAs en cada uno de los componentes de la fisiopatología de la aterosclerosis, así como su utilidad como marcador en el diagnóstico temprano de la aterosclerosis. La inhibición o sobreexpresión de los miRNAs- involucrados determinan la evolución de esta patología, desde su inicio, progreso y regresión. Varios estudios confirman su expresión en cada línea celular y tejido inmerso en la fisiopatología de la aterosclerosis, no obstante, es necesario establecer relaciones entre su expresión in situ y en sangre periférica, su sensibilidad y especificidad para determinar su viabilidad en la práctica clínica.
Descargas
Citas
Ait-Aissa, K., Nguyen, Q. M., Gabani, M., Kassan, A., Kumar, S., Choi, S.-K., Gonzalez, A. A., Khataei, T., Sahyoun, A. M., Chen, C., & Kassan, M. (2020). MicroRNAs and obesity-induced endothelial dysfunction: Key paradigms in molecular therapy. Cardiovascular Diabetology, 19, 136. https://doi.org/10.1186/s12933-020-01107-3
Ali Sheikh, M. S., Alduraywish, A., Almaeen, A., Alruwali, M., Alruwaili, R., Alomair, B. M., Salma, U., Hedeab, G. M., Bugti, N., & A.M.Abdulhabeeb, I. (2021). Therapeutic Value of miRNAs in Coronary Artery Disease. Oxidative Medicine and Cellular Longevity, 2021, 8853748. https://doi.org/10.1155/2021/8853748
Avogaro, A., & de Kreutzenberg, S. V. (2005). Mechanisms of endothelial dysfunction in obesity. Clinica Chimica Acta; International Journal of Clinical Chemistry, 360(1-2), 9-26. https://doi.org/10.1016/j.cccn.2005.04.020
Bentwich, I., Avniel, A., Karov, Y., Aharonov, R., Gilad, S., Barad, O., Barzilai, A., Einat, P., Einav, U., Meiri, E., Sharon, E., Spector, Y., & Bentwich, Z. (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nature Genetics, 37(7), Article 7. https://doi.org/10.1038/ng1590
Bergström, G., Persson, M., Adiels, M., Björnson, E., Bonander, C., Ahlström, H., Alfredsson, J., Angerås, O., Berglund, G., Blomberg, A., Brandberg, J., Börjesson, M., Cederlund, K., de Faire, U., Duvernoy, O., Ekblom, Ö., Engström, G., Engvall, J. E., Fagman, E., … Jernberg, T. (2021). Prevalence of Subclinical Coronary Artery Atherosclerosis in the General Population. Circulation, 144(12), 916-929. https://doi.org/10.1161/CIRCULATIONAHA.121.055340
Chao, C.-T., Yeh, H.-Y., Yuan, T.-H., Chiang, C.-K., & Chen, H.-W. (2019). MicroRNA-125b in vascular diseases: An updated systematic review of pathogenetic implications and clinical applications. Journal of Cellular and Molecular Medicine, 23(9), 5884-5894. https://doi.org/10.1111/jcmm.14535
Chen, T., Huang, Z., Wang, L., Wang, Y., Wu, F., Meng, S., & Wang, C. (2009). MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages. Cardiovascular Research, 83(1), 131-139. https://doi.org/10.1093/cvr/cvp121
Cheng, H. S., Besla, R., Li, A., Chen, Z., Shikatani, E. A., Nazari-Jahantigh, M., Hammoutène, A., Nguyen, M.-A., Geoffrion, M., Cai, L., Khyzha, N., Li, T., MacParland, S. A., Husain, M., Cybulsky, M. I., Boulanger, C. M., Temel, R. E., Schober, A., Rayner, K. J., … Fish, J. E. (2017). Paradoxical Suppression of Atherosclerosis in the Absence of microRNA-146a. Circulation Research, 121(4), 354-367. https://doi.org/10.1161/CIRCRESAHA.116.310529
Churov, A., Summerhill, V., Grechko, A., Orekhova, V., & Orekhov, A. (2019). MicroRNAs as Potential Biomarkers in Atherosclerosis. International Journal of Molecular Sciences, 20(22), 5547. https://doi.org/10.3390/ijms20225547
Demolli, S., Doddaballapur, A., Devraj, K., Stark, K., Manavski, Y., Eckart, A., Zehendner, C. M., Lucas, T., Korff, T., Hecker, M., Massberg, S., Liebner, S., Kaluza, D., Boon, R. A., & Dimmeler, S. (2017). Shear stress-regulated miR-27b controls pericyte recruitment by repressing SEMA6A and SEMA6D. Cardiovascular Research, 113(6), 681-691. https://doi.org/10.1093/cvr/cvx032
DiStefano, J. K. (2019). Angiopoietin-like 8 (ANGPTL8) expression is regulated by miR-143-3p in human hepatocytes. Gene, 681, 1-6. https://doi.org/10.1016/j.gene.2018.09.041
Fazmin, I. T., Achercouk, Z., Edling, C. E., Said, A., & Jeevaratnam, K. (2020). Circulating microRNA as a Biomarker for Coronary Artery Disease. Biomolecules, 10(10), 1354. https://doi.org/10.3390/biom10101354
Feinberg, M. W., & Moore, K. J. (2016). MicroRNA regulation of atherosclerosis. Circulation research, 118(4), 703-720. https://doi.org/10.1161/CIRCRESAHA.115.306300
Fichtlscherer, S., De Rosa, S., Fox, H., Schwietz, T., Fischer, A., Liebetrau, C., Weber, M., Hamm, C. W., Röxe, T., Müller-Ardogan, M., Bonauer, A., Zeiher, A. M., & Dimmeler, S. (2010). Circulating microRNAs in patients with coronary artery disease. Circulation Research, 107(5), 677-684. https://doi.org/10.1161/CIRCRESAHA.109.215566
Gamez-Mendez, A. M., Vargas-Robles, H., Ríos, A., & Escalante, B. (2015). Oxidative Stress-Dependent Coronary Endothelial Dysfunction in Obese Mice. PLOS ONE, 10(9), e0138609. https://doi.org/10.1371/journal.pone.0138609
Hu, B., Song, J. tao, Qu, H. yan, Bi, C. long, Huang, X. zhen, Liu, X. xin, & Zhang, M. (2014). Mechanical Stretch Suppresses microRNA-145 Expression by Activating Extracellular Signal-Regulated Kinase 1/2 and Upregulating Angiotensin-Converting Enzyme to Alter Vascular Smooth Muscle Cell Phenotype. PLoS ONE, 9(5), e96338. https://doi.org/10.1371/journal.pone.0096338
Iantorno, M., Campia, U., Daniele, N., Nistico, S., Forleo, G., Cardillo, C., & Tesauro, M. (2014). Obesity, inflammation and endothelial dysfunction. International journal of immunopathology and pharmacology, 28, 169-176.
Jebari-Benslaiman, S., Galicia-García, U., Larrea-Sebal, A., Olaetxea, J. R., Alloza, I., Vandenbroeck, K., Benito-Vicente, A., & Martín, C. (2022). Pathophysiology of Atherosclerosis. International Journal of Molecular Sciences, 23(6), 3346. https://doi.org/10.3390/ijms23063346
Kumar, S., Williams, D., Sur, S., Wang, J.-Y., & Jo, H. (2019). Role of flow-sensitive microRNAs and long noncoding RNAs in vascular dysfunction and atherosclerosis. Vascular pharmacology, 114, 76-92. https://doi.org/10.1016/j.vph.2018.10.001
Laffont, B., & Rayner, K. J. (2017). MicroRNAs in the pathobiology of atherosclerosis. The Canadian journal of cardiology, 33(3), 313-324. https://doi.org/10.1016/j.cjca.2017.01.001
Lee, D.-Y., Yang, T.-L., Huang, Y.-H., Lee, C.-I., Chen, L.-J., Shih, Y.-T., Wei, S.-Y., Wang, W.-L., Wu, C.-C., & Chiu, J.-J. (2018). Induction of microRNA-10a using retinoic acid receptor-α and retinoid x receptor-α agonists inhibits atherosclerotic lesion formation. Atherosclerosis, 271, 36-44. https://doi.org/10.1016/j.atherosclerosis.2018.02.010
Lee, Y., & Im, E. (2021). Regulation of miRNAs by Natural Antioxidants in Cardiovascular Diseases: Focus on SIRT1 and eNOS. Antioxidants, 10(3), 377. https://doi.org/10.3390/antiox10030377
Li, P., Zhong, X., Li, J., Liu, H., Ma, X., He, R., & Zhao, Y. (2018). MicroRNA-30c-5p inhibits NLRP3 inflammasome-mediated endothelial cell pyroptosis through FOXO3 down-regulation in atherosclerosis. Biochemical and Biophysical Research Communications, 503(4), 2833-2840. https://doi.org/10.1016/j.bbrc.2018.08.049
Lim, L. P., Lau, N. C., Garrett-Engele, P., Grimson, A., Schelter, J. M., Castle, J., Bartel, D. P., Linsley, P. S., & Johnson, J. M. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433(7027), Article 7027. https://doi.org/10.1038/nature03315
Maurer, B. (2010). MicroRNA‐29, a key regulator of collagen expression in systemic sclerosis. 6(2), 1563-1838. https://doi.org/10.1002/art.27443
Mellis, D., & Caporali, A. (2018). MicroRNA-based therapeutics in cardiovascular disease: Screening and delivery to the target. Biochemical Society Transactions, 46(1), 11-21. https://doi.org/10.1042/BST20170037
Meloni, M., Marchetti, M., Garner, K., Littlejohns, B., Sala-Newby, G., Xenophontos, N., Floris, I., Suleiman, M.-S., Madeddu, P., Caporali, A., & Emanueli, C. (2013). Local Inhibition of MicroRNA-24 Improves Reparative Angiogenesis and Left Ventricle Remodeling and Function in Mice With Myocardial Infarction. Molecular Therapy, 21(7), 1390-1402. https://doi.org/10.1038/mt.2013.89
Pereira-da-Silva, T., Napoleão, P., Costa, M. C., Gabriel, A. F., Selas, M., Silva, F., Enguita, F. J., Cruz Ferreira, R., & Mota Carmo, M. (2021). Association between miR-146a and Tumor Necrosis Factor Alpha (TNF-α) in Stable Coronary Artery Disease. Medicina, 57(6), 575. https://doi.org/10.3390/medicina57060575
Rask-Madsen, C., Domínguez, H., Ihlemann, N., Hermann, T., Køber, L., & Torp-Pedersen, C. (2003). Tumor necrosis factor-alpha inhibits insulin’s stimulating effect on glucose uptake and endothelium-dependent vasodilation in humans. Circulation, 108(15), 1815-1821. https://doi.org/10.1161/01.CIR.0000091406.72832.11
Schober, A., Nazari-Jahantigh, M., Wei, Y., Bidzhekov, K., Gremse, F., Grommes, J., Megens, R. T. A., Heyll, K., Noels, H., Hristov, M., Wang, S., Kiessling, F., Olson, E. N., & Weber, C. (2014). MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nature Medicine, 20(4), 368-376. https://doi.org/10.1038/nm.3487
Simionescu, N., Niculescu, L. S., Carnuta, M. G., Sanda, G. M., Stancu, C. S., Popescu, A. C., Popescu, M. R., Vlad, A., Dimulescu, D. R., Simionescu, M., & Sima, A. V. (2016). Hyperglycemia Determines Increased Specific MicroRNAs Levels in Sera and HDL of Acute Coronary Syndrome Patients and Stimulates MicroRNAs Production in Human Macrophages. PloS One, 11(8), e0161201. https://doi.org/10.1371/journal.pone.0161201
Solly, E. L., Dimasi, C. G., Bursill, C. A., Psaltis, P. J., & Tan, J. T. M. (2019). MicroRNAs as Therapeutic Targets and Clinical Biomarkers in Atherosclerosis. Journal of Clinical Medicine, 8(12), Article 12. https://doi.org/10.3390/jcm8122199
Sun, H.-X., Zeng, D.-Y., Li, R.-T., Pang, R.-P., Yang, H., Hu, Y.-L., Zhang, Q., Jiang, Y., Huang, L.-Y., Tang, Y.-B., Yan, G.-J., & Zhou, J.-G. (2012). Essential Role of MicroRNA-155 in Regulating Endothelium-Dependent Vasorelaxation by Targeting Endothelial Nitric Oxide Synthase. Hypertension, 60(6), 1407-1414. https://doi.org/10.1161/HYPERTENSIONAHA.112.197301
Vikram, A., Kim, Y.-R., Kumar, S., Li, Q., Kassan, M., Jacobs, J. S., & Irani, K. (2016). Vascular microRNA-204 is remotely governed by the microbiome and impairs endothelium-dependent vasorelaxation by downregulating Sirtuin1. Nature Communications, 7(1), Article 1. https://doi.org/10.1038/ncomms12565
Wang, K.-C., Garmire, L. X., Young, A., Nguyen, P., Trinh, A., Subramaniam, S., Wang, N., Shyy, J. Y. J., Li, Y.-S., & Chien, S. (2010). Role of microRNA-23b in flow-regulation of Rb phosphorylation and endothelial cell growth. Proceedings of the National Academy of Sciences of the United States of America, 107(7), 3234-3239. https://doi.org/10.1073/pnas.0914825107
Weber, M., Baker, M. B., Patel, R. S., Quyyumi, A. A., Bao, G., & Searles, C. D. (2011). MicroRNA Expression Profile in CAD Patients and the Impact of ACEI/ARB. Cardiology Research and Practice, 2011, 532915. https://doi.org/10.4061/2011/532915
Wiemer, E. A. C. (2007). The role of microRNAs in cancer: No small matter. European Journal of Cancer (Oxford, England: 1990), 43(10), 1529-1544. https://doi.org/10.1016/j.ejca.2007.04.002
Zhang, W., Yan, L., Li, Y., Chen, W., Hu, N., Wang, H., & Ou, H. (2015). Roles of miRNA-24 in regulating endothelial nitric oxide synthase expression and vascular endothelial cell proliferation. Molecular and Cellular Biochemistry, 405(1-2), 281-289. https://doi.org/10.1007/s11010-015-2418-y
Zhao, W., Zhao, S.-P., & Zhao, Y.-H. (2015). MicroRNA-143/-145 in Cardiovascular Diseases. BioMed Research International, 2015, 531740. https://doi.org/10.1155/2015/531740
Zhou, J., Li, Y.-S., Nguyen, P., Wang, K.-C., Weiss, A., Kuo, Y.-C., Chiu, J.-J., Shyy, J. Y., & Chien, S. (2013). Regulation of vascular smooth muscle cell turnover by endothelial cell-secreted microRNA-126: Role of shear stress. Circulation Research, 113(1), 40-51. https://doi.org/10.1161/CIRCRESAHA.113.280883
Zhu, G.-F., Yang, L.-X., Guo, R.-W., Liu, H., Shi, Y.-K., Ye, J.-S., & Yang, Z.-H. (2014). MicroRNA-155 is inversely associated with severity of coronary stenotic lesions calculated by the Gensini score. Coronary Artery Disease, 25(4), 304-310. https://doi.org/10.1097/MCA.0000000000000088
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Revista Científica Arbitrada Multidisciplinaria PENTACIENCIAS

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.